Флюксий исчисление - Definition. Was ist Флюксий исчисление
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Флюксий исчисление - definition

Интуиционистское исчисление предикатов; Интуиционистское исчисление высказываний

Флюксий исчисление      

наиболее ранняя форма дифференциального и интегрального исчислений. Возникло и в основных частях было развито в сочинениях И. Ньютона; основные факты Ф. и. были получены им в 1665-66. Задачи исчисления флюксий Ньютон формулировал так: "1. Длина проходимого пути постоянно (т. е. в каждый момент времени) дана; требуется найти скорость движения в предложенное время. 2. Скорость движения постоянно дана; требуется найти длину пройденного в предложенное время пути" (Ньютон И., Математические работы, пер. с лат., М. - Л., 1937, с. 45). Время Ньютон понимал как общий аргумент, к которому отнесены все переменные величины. Систему величин х, у, z,..., одновременно изменяющихся непрерывно в зависимости от времени, он называл флюентами (лат. fluens - текущий, от fluo - теку), скорости, с которыми изменяются флюенты, - флюксиями (лат. fluxio - истечение): , , . Т. о., флюксий являются производными флюент по времени. Бесконечно малые изменения флюент Ньютон назвал моментами (понятие момента в Ф. и. соответствует дифференциалу), момент независимого переменного он обозначил знаком о, момент флюенты х - знаком xo. Представление о существе операции отыскания флюксий и особенностях символики можно получить из следующего примера (см. там же, с. 50): "Пусть, например, дано уравнение

x3 - axx + аху - y3 = 0.

Подставь в него и вместо х и у, ты получишь

Но по предположению x3 - axx + аху - y3 = 0. Поэтому вычеркни эти члены, а остальные раздели на о. При этом останется

Но так как мы предположили о бесконечно малой величиной, для того чтобы она могла выражать моменты величин, то те члены, которые на неё умножены, можно считать за ничто в сравнении с другими. Поэтому я ими пренебрегаю, и остаётся

Об обратной задаче Ф. и., обосновании Ф. и. и его истории см. в ст. Ньютон И. и Дифференциальное исчисление.

Ф. и., как особый вид дифференциального и интегрального исчисления со своеобразной символикой, развивалось только в работах английских математиков. В конце 17 - начале 18 вв. оно было вытеснено дифференциальным исчислением с символикой, более удобной и потому чаще употребляемой. Символы, принятые в Ф. и., частично сохранились в механике и в векторном анализе.

Лит.: Ньютон И., Математические работы, пер. с лат., М. - Л., 1937; его же, Математические начала натуральной философии, пер. с лат., М. - Л., 1936; Цейтен Г. Г., История математики в XVI и XVII веках, пер. с нем., 2 изд., М. - Л., 1938; Колмогорова. Н., Ньютон и современное математическое мышление, в кн.: Московский университет - памяти Исаака Ньютона. 1643-1943, М., 1946; Cajori F., A history of the conceptions of limits and fluxions in Great Britain, from Newton, to Woodhouse, Chi. - L., 1919.

Типизированное лямбда-исчисление         
Типизированное лямбда-исчисление — это версия лямбда-исчисления, в которой лямбда-термам приписываются специальные синтаксические метки, называемые типами. Допустимы различные наборы правил конструирования и приписывания таких меток, они порождают различные системы типизации.
Лямбда-исчисление         
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем для формализации и анализа понятия вычислимости.

Wikipedia

Интуиционистская логика

Интуициони́стская ло́гика — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930.

Основное отличие от привычного исчисления высказываний заключается в том, что отсутствует закон исключённого третьего.

Схемы аксиом 1-10 и правило «модус поненс» задают интуиционистское исчисление высказываний. Все 12 схем аксиом и все 3 правила вывода задают интуиционистское исчисление предикатов. Интуиционистское исчисление предикатов отличается от классического тем, что в последнем вместо схемы аксиом 10 используется схема аксиом ( ¬ ¬ A ) A {\displaystyle (\neg \neg A)\to A} ..